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Motivation
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Jan Schuemann & Aimee McNamara

• Monte Carlo simulations offer an exceedingly powerful approach to the quantification of

proton energy deposition on the microscopic scale, but whilst they have been well

validated at the macroscopic level, their microscopic validation remains lacking

• We explored the potential of Fluorescent Nuclear Track Detectors (FNTDs) as a tool to

validate microscopic Monte Carlo simulations of proton energy deposition
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What is a Fluorescent Nuclear Track Detector (FNTD)?

FNTDs are available commercially from Landauer Inc.

Images from Grischa M Klimpi et al (German Cancer Research Center) slides, 8th ECMP, Athens Sept 12, 2014.
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Our method

The irradiation

• We irradiated 7 FNTDs using

unmodulated passively scattered protons

• The dose was ≈ 0.07 Gy (3 MU)

• The beam range in water was 12 cm

(energy 125 MeV)

• A custom holder was used to position

FNTDs at seven depths (12, 30, 108, 112,

116, 120 and 128 mm)
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Our method

Microscopy

• FV1200 Confocal microscope

(Olympus) with a custom high-power

red laser (641 nm, 80 mW) and an

oil-immersion objective lens

• Single set of image parameters for all

FNTDs

• Ten slice Z-stacks, with slice

thickness = 2µm, starting at a depth

of 10µm from the FNTD surface

• 6-10 Z-stacks per FNTD

• A scan time of ≈23 mins per Z-stack

• Diffraction limit = 218 nm

Track analysis

• Python Trackpy (v 0.3.0)

• Locates local maxima; filters very dim maxima away;

iteratively refines the remainder to subpixel accuracy
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MC simulations, implemented in two stages:

1. using TOPAS to model the particle spectrum

2. using TOPAS-nBio with Geant4-DNA physics to score

the track structure of particles through a water surrogate

of Al2O3:C,Mg. The mass-density of the water was

scaled to match the Aluminium Oxide water-equivalent

path length for each FNTD position.
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Example FNTD images
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Results: simulated LET versus FNTD median track mass
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Results: TOPAS n-Bio simulations versus FNTD track mass histograms
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Conclusion

• FNTDs enable metrology of individual proton tracks in a manner that is relatively robust

• If a strong reference data-set was acquired, they could be used to confirm LET in proton

biological experiments

• Our FNTD data experimentally replicates trends demonstrated in microscopic simulations

of energy depositions of individual particles: we obtained statistically significant

correlations between experimental and simulated values for “track mass” and the Gaussian

sigma of its associated distribution
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