th ratee Pravda project - imaging update

Proton CT principles

Three and a half years later

Well, we made it!

Built lots of hardware ... Wrote lots of software ...

Took lots of measurements ...

Had lots of discussions

Proton CT reconstruction: getting the data is only half the problem

G Poludniowski, N M Allinson and P M Evans, Proton computed tomography reconstruction using a backprojection-then-filtering approach, Physics in Medicine and Biology Journal link tile ends, 59, (2014)

- Tomographic reconstruction relies on straight rays
- Assumptions of tomography are only weakly violated but there are important consequences

$$
\operatorname{RSP}(x, y)=i(x, y){ }^{* *} k(x, y)
$$

backprojection-then-filtering

Total analytic solution
Cope with non-linear paths

Correction for finite reconstruction volume Incorporate differing most likely path algorithms Computationally efficient

Relative stopping-power pCT

high contrast

low contrast

125 MeV beam with compensator 180 projections at 1° steps
~IM protons tracked per projection

Relative scattering-power pCT

Total deflection-angle squared determined for each proton based on measurements of spatial position in each of the four tracker units. Total mean-square angular deflection can be approximated as:

$$
\vartheta^{2}=\left(\Omega_{x, \text { in }}-\Omega_{x, \text { out }}\right)^{2}+\left(\Omega_{y, \text { in }}-\Omega_{y, \text { out }}\right)^{2}
$$

Proton CT modalities

Stopping-power - most crucial quantity for PT planning

For biological materials: stopping-power, scattering-power and attenuating-power can be related to electron density (Kanematsu et al., Medical Physics 39, I016, 2012)

relative stopping-power

Scattering and attenuation power only require trackers - lower system complexity

Possible to combine two or more modalities to yield improved quality pCT

just returned from 2 weeks at:

Most of the iThemba Team

6-insert phantom relative stopping-power pCTs (good stats) (scattering and attenuation pCTs come free)
2 new phantoms
Biological (meat) phantom

Direct proton range measurement phantom

+1.5 TB of calibration data!

Summary

Proton imaging is challenging but proven! Certainly for broad beam delivery.
Treating and imaging with the same radiation - "use the same ruler"
Imagery will be of clinical quality - certainly better than cone-beam!

PRaVDA concept is integrated instrument for entire PT workflow

PRaVDA is fully solid-state
I've come about

Need to optimise sensors and supporting engineering
Need to explore different pCT modalities and fusion with other imagery
Need to integrate with current and future delivery systems (pencil beam)
Need to integrate into robust, effective and efficient workflow
Need to undergo trials
Need to commercialise
Need to clinically use!

the details

Acknowledgements

University of Lincoln
Grainne Riley
Chris Waltham
Michela Esposito
University of Birmingham
Phil Allport
David Parker
Tony Price
Ben Phoenix
University of Liverpool
Jon Taylor
Gianluigi Casse,
Tony Smith
llya Tsurin
University of Surrey
Phil Evans
University of Warwick
Sam Manger
Jon Duffy
Karolinska University Hospital, Sweden Gavin Poludniowski

University of Cape Town
Steve Peterson
University Hospital Birmingham NHS Foundation Trust Stuart Green

University Hospital Coventry and Warwickshire NHS Trust Spyros Manolopoulos
iThemba LABS, SA Jaime Nieto-Camero Julyan Symons

ISDI Ltd

Thalis Anaxagoras
Andre Fant Przemyslaw Gasiorek Michael Koeberle
aSpect Systems GmbH Marcus Verhoeven
Daniel Welzig
Daniel Schöne
Frank Lauba

