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1. Motivation and Aim

Challenges in charged particle therapy

 → Charged particles, e.g. carbons are highly sensitive to tissue density variations.

e.g.:

400MeV/u carbon beam crosses 27.3cm of water but only 16.4cm of bone

So 1mm of bone in a water medium causes an error of 0.6mm
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1. Motivation and Aim

Challenges in charged particle therapy

Image from Mori et al. [2013]

 → Tumor shifts/shrinkage 
geographical miss and/or high-dose 
deposition  at OARs.

It is crucial to have on-line/precise  knowledge of edges/interfaces 
along carbon's path!
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Possible Solution: Carbon Imaging
 → Carbon CT/Radiography
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1. Motivation and Aim

Stickman

Pencil Beam

Bragg Curve

 → Carbons travel near straights paths (less than 
1mm error for WET of 20cm) Fekete et al. [2016]

Bragg Peak position 
is converted into total 
WET crossed.

Range detector
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1. Motivation and Aim

 Each peak contains information about the crossed materials
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1. Motivation and Aim

It is crucial to have on-line/precise knowledge of edges/interfaces 
along carbon's path!
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➔Reduced number of irradiation beams in order to reduce dose delivered to the patient.

➔No imaging reconstruction methods.
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2. Materials and Methods

➔We can decompose the peak into pristine Bragg peaks.

∆WET 
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➔We can decompose the peak into pristine Bragg peaks.
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∆WET 

Assumptions:

1. Straight path;

2. No tails due to secondary particles.

3. Gaussian Beam, this is assumed to be valid

 at any depth along the beam trajectory.

4. R
1
=αE

0

p (Bortfeld and  Schlegel, [1996])

The dose deposit at any point z<R:
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2. Materials and Methods
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Δ I=
∂ E (R2)−∂ E (R1)

∂ E (R1)

Theoretical ∆I−∆WET curve

W
1 
→ percentage of carbons crossing 

above the interface

➔We can decompose the peak into pristine Bragg peaks.

➔  We scan the interface for three 
irradiation spots (known spacing).

➔Apply the fit 
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2. Materials and Methods
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Δ I=
∂ E (R2)−∂ E (R1)

∂ E (R1)

Theoretical ∆I−∆WET curve

➔We can decompose the peak into pristine Bragg peaks.

0
➔ At the edge:
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2. Materials and Methods

Validation: Monte Carlo Simulations

➔ 400 MeV carbon beam with n=106 particles
➔  Geant4 (v 4.9.6.p02) (Agostinelli et al. [2003]).  Ion packages (Lechner et al. [2010]).
➔ FWHM = 4mm, 8mm and 10mm

Marta F. Dias, 1st Dec 2016
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Rectangular bone insert Semi-cylindrical bone insert
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2. Materials and Methods

Parametric phantoms: 

Marta F. Dias, 1st Dec 2016

Rectangular bone insert Semi-cylindrical bone insert

Range dilution effects, due to carbons 
from the same beam crossing different 

➔ Beam position: [-3,-2,-1,0,1,2,3]mm above and below the interface 
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→  X-ray CT prior knowledge for peak identification

→  The WET crossed and expected BP can be computed.

Marta F. Dias, 1st Dec 2016

Edge detection through multiple BP: lung tumor example

3. Materials and Methods
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4. Results and Discussion

Marta F. Dias, 1st Dec 2016

Parametric phantoms:

Semi-cylindricalParallel interface
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Parametric phantoms:

Parallel interface Semi-cylindrical

Zero at:  0.001mm

Edge Edge
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4. Results and Discussion
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Parametric phantoms:

Parallel interface Semi-cylindrical

→ Same error for all FWHM
→ Larger FWHM easier to identify the peaks

Edge Edge
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Clinical environment: Lung tumor
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4. Results and Discussion

Marta F. Dias, 1st Dec 2016

Clinical environment: Lung tumor

Zero at:  0.001/-0.015mm

Edge
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5. Conclusions and Future work

Edge detection within <0.01mm accuracy using multiple BP information.

 → Carbon imaging is worse than helium imaging [Fekete et al. 2016];
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6. Conclusions and Future work

Edge detection within <0.01mm accuracy using multiple BP information.

 → Carbon imaging is worse than helium imaging [Fekete et al. 2016];

 → Difficult to change particle type and if two beams available, it is possible on-line 
detection; 

 → Low dose to the patient;

 → Prior-knowledge strategies are required for the identification of the relevant 
peaks;

 → Future work will consider applying the same methods to other tumor areas and 
structures which can be used for patient positioning.  

Marta F. Dias, 1st Dec 2016
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Thank you so much for your attention/time!

Questions? 
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93. Results and Discussion

Edge detection through two Bragg peaks: theoretical 
formulation

FWHM=4 FWHM=8mmFWHM=4mm

FWHM=10mm

➔ Smeared BP
➔ Different BP position
➔ Larger FWHM  →

Larger the ΔWEPL
➔ Larger FWHM  →

easier  BP 
identification

Marta F. Dias, 9th Nov 2016

Semi-cylindrical insert
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174. Materials and Methods

➔ HU-RSP calibration curve
➔ Patient CT data (Cancer Imaging Archive)
➔ FWHM=4mm
➔ Beam position: [-3,-2,-1,0,1,2,3]mm above and below the 

interface 

WET=∑ (RSP i×ai) Measured 
signal 
with 
range 
dilution 
effects

Validation: Validation with ray-tracing

Marta F. Dias, 9th Nov 2016
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