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THE IMPORTANCE OF MC IN PROTON THERAPY

• For proton therapy applications, Monte Carlo (MC) techniques have 
many advantages over commercial algorithms: 

• Enhanced sensitivity to complex geometries  
and in-beam density variations, 

• Ability to report dose to medium, 

• Calculation of LET distributions, 

• Estimation of neutron dose levels, 

• Prediction of post-radiation PET activity for in-vivo range verification.

Paganetti et al. 2008 Phys. Med. Biol.

XiO MC
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PATIENT GEOMETRY TO MC INPUTS
• One of the key steps in the preparation of a MC simulation is the 

creation of the patient geometry, including the assignation of 
material composition in each voxel. 

• Complete elemental composition and mass density is necessary 
to calculate the exact cross sections for all interactions considered. 

• Great attention must be paid to this step as it influences all results 
generated by the simulation: « Rubbish in, Rubbish out ».
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THE SCHNEIDER METHOD
To extract MC inputs from single energy CT (SECT) data, the gold 
standard is the method of Schneider et al. (2000). The CT is calibrated to 
construct a segmented look-up table (LUT) that links every possible HU 
to a certain set of MC inputs. 
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DUAL AND MULTI-ENERGY CT
• With dual- or multi-energy CT, 

empirical LUT are obsolete, as 
more information can be extracted 
directly from MECT data

HU1{

HU2

{

http://www.healthcare.siemens.com/.
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DUAL AND MULTI-ENERGY CT
• With dual- or multi-energy CT, 

empirical LUT are obsolete, as 
more information can be extracted 
directly from MECT data 

• Still not enough information to 
derive directly MC inputs 

• How can we use optimally the 
added information to improve 
the quality of MC inputs?

HU1{

HU2

{

http://www.healthcare.siemens.com/.
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CT DATA TO MONTE CARLO INPUTS
• We want to extract full atomic composition and mass density, but we have 

only limited information (# of energies) per voxel.  

• Tissue characterization for Monte Carlo dose calculation from CT data is an 
underdetermined problem 

• We propose to use principal component analysis (PCA) on reference dataset 
to extract a new basis of variables that can describe human tissues 
composition more efficiently by reducing the dimensionality of the 
problem. 

• We call these variables Eigentissues (ET)



9

CT DATA TO MONTE CARLO INPUTS
• We want to extract full atomic composition and mass density, but we have 

only limited information (# of energies) per voxel.  

• Tissue characterization for Monte Carlo dose calculation from CT data is an 
underdetermined problem 

• We propose to use principal component analysis (PCA) on reference dataset 
to extract a new basis of variables that can describe human tissues 
composition more efficiently by reducing the dimensionality of the 
problem. 

• We call these variables Eigentissues (ET)



10

EIGENTISSUE REPRESENTATION OF HUMAN BODY

• All information relevant for dose calculation can be stocked in a 
vector of partial electron densities: 

• The ET representation consists of a linear transformation of x:

x = ⇢e [�1 �2 ... �M ]

= [x1 x2 ... xM ]

x = y1 ·ET1 + y2 ·ET2 + ...+ yM ·ETM

Density of electrons Fraction of electrons of element M in the tissue

Vector of the partial densities in the M th eigentissue
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EIGENTISSUE REPRESENTATION OF HUMAN BODY

• The ET are orthogonal vectors directed in the direction where there is 
the highest variance within the dataset.  

• They are sorted in a way that the variance of their respective yi 
decreases rapidly as i increases.  

• A given tissue can be accurately characterized using only few yi :

x ' y1 ·ET1 + y2 ·ET2 + y3 ·ET3...+ yM ·ETM
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APPLYING PCA TO HUMAN TISSUES
• Human tissues are composed of a limited number of elements. 

Including trace elements, only 13 different chemical components are 
reported in the literature. 

• Also, the weight fraction of these elements is often strongly 
correlated (ex: P & Ca) or anticorrelated (ex: C & O). 

• The eigentissues allow to characterize human tissues with less than 13 
variables without losing much accuracy.
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SELF-CONSISTENCY OF THE METHOD

• We tested the method in the context of Monte Carlo simulations 
using TOPAS to determine how many ETs are necessary to allow 
accurate range prediction 

• Mono-energetic proton beam  
of 183 MeV/u  

• Dose to medium scored  
in 0.1 mm slices 

• 250 000 histories per run
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SELF-CONSISTENCY OF THE METHOD

• Monte Carlo 
simulations using 
TOPAS for four 
reference tissues 
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SELF-CONSISTENCY OF THE METHOD
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• Monte Carlo 
simulations using 
TOPAS for four 
reference tissues  

• Only two ET are 
enough to get a 
submillimetric 
precision on proton 
range prediction.
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ADAPTATION TO CT DATA
• Using a suitable stoichiometric calibration, the photon attenuation of 

each ET can be estimated for any spectrum or imaging protocol.
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ADAPTATION TO CT DATA
• Once their attenuation coefficient is estimated, the ETs are treated as 

virtual materials.  

• If K information is available (i.e. K energies),  decomposition is 
performed to extract the fraction of the K more meaningful ETs in 
each voxel.
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APPLICATION TO DECT: BENCHMARKING WITH OTHER 
METHODS

• Comparison with two recently published 
methods for the characterization of 43 
reference soft tissues using DECT: 

• Water-Lipid-Protein (WLP) 
decomposition (Malusek et al. 2013) 

• Parameterization (Hünemohr et al. 2014)  

• Simulated HU for 80 kVp and 140/Sn kVp 
spectra of the SOMATOM Definition Flash 
DSCT (noise is neglected)
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POTENTIAL EXTENSION TO MECT
• Separating a 140 kVp 

spectrum in five 
energy bins, the 
method shows 
improvement in 
extracting elemental 
weights with more 
than two information. 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CONCLUSION
• Eigentissues representation of human body composition minimizes the number of parameters 

needed for accurate characterization 

• Adapting this representation to material decomposition of CT data allows extracting high quality 
Monte Carlo inputs from only few measurements 

• The method is accurate and versatile: 

• Not limited to only two parameters (EAN and ED) 

• Valid through the whole range of X-ray energies (e.g. kV and MV) 

• RMS errors of 0.11% on SPR for 43 reference tissues 

• Future work: test the method in realistic conditions including noise 

• Recent publication: A. Lalonde and H. Bouchard,  A general method to derive tissue parameters 
for Monte Carlo dose calculation with dual- and multi-energy CT, Phys. Med. Biol. 
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