

PPRIG Proton Physics Workshop 3

Testing The Effect of Breathing Variability on Proton Therapy Plans and Motion Mitigation Techniques

Ho Lok Man holokman89@gmail.com Jamie McClelland Richard Amos

Aim of the study

- To study the influence of interplay effect in spot scanning method in proton therapy
- To investigate the influencing parameters which alter the dose distribution
- To study the effects of the motion variability on the motion mitigation techniques

Background Lung Cancer and Conventional Radiotherapy

- Lung Cancer
 - Most common cancer around the world
 - 12.9% of new case diagnosed
- Radiotherapy
 - Medically inoperable, surgically inresectable disease or advanced lesions
 - Poor overall survival, due to high local relapse rate and development of metastasis
 - Dose to critical organs are high, limiting the dose to tumour

Background Proton Therapy

- Well-defined Bragg Peak
- Normal tissue beyond the range can be spared
- Active spot scanning
 - A series of narrow, nearly monoenergetic pencil beams in a single layer
 - Altering energy layer by layer

Figure source: Varian ProBeam[™] System User Menu

Background Lung Motion

- The position change due to respiration can be ranging from 7 mm to 38.2 mm in supine position
- 40% of the lung tumor moved more than 5mm

Background Interplay Effect

Targets move during irradiation, which causes the intrafractional motion uncertainty

Figure source: Bert et.al, 2008

- Decreases both the conformity and homogeneity
- May be smoothed out after all 30-35 fractions
- Severe impact on hypofractionation treatment

Background Rescanning Methods

- Scanning the treatment fields several times per fraction, with decreased weighting for each scan
- Statistical averaging of the interplay effect
- Three rescanning strategies used:
 - Layered rescanning
 - Volumetric rescanning (without gantry angle repetition)
 - Volumetric rescanning (with gantry angle repetition)

Background Problems in Current Proton Therapy Planning

- Current Management
 - Based on photon therapy treatment
 - Target volume is contoured on the MIP images of 4DCT
 - Doses are calculated and evaluated on the AVG images of 4DCT
- Problems
 - Neglecting the interplay effect
 - Hiding the "realistic" dose
 - Leading to under-dosage of target / over-dosage in critical organs

Background Respiratory Motion Model

- Measuring the displacement of internal anatomy using deformable image registration
- Approximating the relationship between the internal motion and the surrogate signal
- Predicting a new cine CT volume image set corresponding to the chosen respiratory parameters

Methods and Materials CT Image Generation

- One set unsorted 4DCT images and corresponding surrogate signal was obtained from UCH
- A B-spline transformation model developed by CMIC, UCL was employed
- 10 equal phases of artifact-free CT images, together with the deformation map, were generated

Methods and Materials Treatment Plan Generation

- GTV was contoured in MIP CT images, overriding with 70HU
- OARs were contoured on AVG CT images
- Prescription: 70Gy in 35fr
- Three-field arrangement, equal in weighting
- Single Field Optimization

Methods and Materials Scanning Spots Distribution

- All the weighted spots were partitioned in to different phases, according to their sequences and duration
- Layer switching time and Gantry rotation time included
- Assumption:
 - Breathing cycle was 4s
 - No time gap between spots
 - Delivery started at phase 0

Methods and Materials Scanning Spots Distribution

- Doses were recalculated on each phases
- Calculated doses were deformed on the reference image
- Accumulative dose was shown on reference image

UC

Methods and Materials Analysis Methods

- Target Volume
 - D1-D99, D5-D95
 - Homogeneity index

$$H_d = 1 - \frac{1}{\overline{D}} \sqrt{\frac{\sum_i (D_i - \overline{D})^2}{N - 1}}$$

- Critical Organs
 - Spinal cord
 - Max dose
 - Lungs
 - V5, V20

Methods and Materials Various Scenarios

Scenario		Purpose				
1	Nominal dose distribution	Demonstrating the dose distributions generated by routine clinical planning method				
2	Dynamic Dose (No rescanning)	Demonstrating the interplay effect on the 4DCT				
3	Rescanning 3a – layer rescanning 3b – volumetric rescanning (Without gantry angle repetition) 3c – volumetric rescanning (With gantry angle repetition)	Demonstrating the interplay compensation on the CT, when simple rescanning strategies was employed				

Results Target Doses

Scenario		D1-D99	D5-D95	Max	Min	Hom.Ind
Nominal dose	11.830	8.280	113.524	96.889	0.976	
Dynamic dose	15.111	11.198	113.563	95.569	0.967	
Rescanning 2 times	Layered	14.582	10.843	113.015	94.860	0.968
	Volumetric	11.955	8.643	111.449	98.070	0.974
	Volumetric (RGA)	10.991	8.871	107.958	94.723	0.971
Rescanning 3 times	Layered	14.486	10.982	112.627	94.893	0.968
	Volumetric	6.067	4.475	106.450	99.111	0.987
	Volumetric (RGA)	11.979	9.700	117.249	102.565	0.972

*All are in percentage of prescribed dose of 70Gy

Results Critical Organ Dose

Scenario		Body_Max	Spine_Max	lungs_V5	lungs_V20
Nominal dose	113.600	4.017	22.977	14.016	
Dynamic dose	118.529	4.247	23.289	14.757	
Rescanning 2 times	Layered	118.525	4.275	23.306	14.788
	Volumetric	112.522	4.298	23.275	14.891
	Volumetric (RGA)	112.253	4.227	23.480	14.955
Rescanning 3 times	Layered	119.578	4.261	23.349	14.803
	Volumetric	112.040	4.301	23.366	14.774
	Volumetric (RGA)	117.645	4.319	23.210	14.511

*Body_Max and Spine_Max are in percentage of prescribed dose of 70Gy *Lungs_V5 and V20 are in percentage of lung volume

Results Dose Distribution

Nominal

Dynamic

2x Layered rescanning

3x Layered rescanning

2x Volumetric rescanning 3x Volumetric rescanning 2x Volumetric rescanning 3x Volumetric rescanning (RGA) (RGA)

Results Dose Distribution

Nominal

Dynamic

2x Layered rescanning

3x Layered rescanning

2x Volumetric rescanning 3x Volumetric rescanning 2x Volumetric rescanning 3x Volumetric rescanning (RGA) (RGA)

Discussion Realistic Dose

- Dynamic dose was shown when the time parameter was considered
- The interplay effect was not as large as expected in the experiment
 - Most of the energy layers were delivered within a single phase of image
 - Fast scanning of the new Varian system greatly reduced the interplay effect
 - Multiple beams a kind of rescanning

Discussion Rescanning Methods

- Layered rescanning didn't improve the interplay effect
 - Fast beam delivery and no time gap between each spots, only a little change in the distribution of spots
- Volumetric rescanning improved the dose homogeneity
 - Extra layer switching time and gantry rotation time were added during distribution of spots
 - The spots with decreased weighting were distributed in more phases, and thus statistically averages out the interplay effect

Limitation

- Only one set of patient data was employed
 - More data sets will increase the robustness of both motion model and treatment planning strategy
- Reproducible breathing assumed
- Assuming that the first spots was delivery at the beginning of breathing phase 0

Never perfectly achieved in clinical situation

- Dose rate of proton therapy is fluctuating during the beam delivery
 - corrected the dose rate for each spots accordingly

Conclusion

- Interplay effect decrease the homogeneity of the proton therapy plans
- Novel motion model was used to generate artifactfree CT image and deform the doses
- Fast delivery of scanning spots can reduce the interplay effect
- If the treatment plan is good enough, and the beam delivery is fast, the interplay effect may not cause large impact in dose distribution

Thank You