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Particle therapy

* lon and proton therapy hold advantages
over conventional radiotherapy

* Physical benefits
* Dose distribution
* the way the particles interact with matter
e Linear energy transfer (LET)

* Biological benefits
* Radiobiological effectiveness (RBE)
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lon therapy

* At the moment ion therapy just
means carbon ions

* Advantages of Carbon ions over
protons
* Improved Dose distribution
* Higher LET correlating to higher RBE

* Disadvantages

* Variable high energy RBE — difficult to
model

* Dose tail
* Size of the required facility
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Figure 11. Absolute dose per unit fluence for protons and a range of
ions




Fragmentation

* Fragmentation is more prevalent in
carbon ion therapy
e secondary particles from inelastic
nuclear interactions between the ion and

the tissue - which adds to the total
damage 1/

* The created low-z fragments have a
longer range, creating a dose tail beyond
the Bragg peak

* problematic for organs at risk

* The use of lighter ions like helium have a
reduced fragmentation tail 1>/
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Figure 27. A description of the relative ionization against depth
for 330 MeV/u carbon ions, highlighting the fragmentation tail.




Acceleration

* The difficulty in accelerating carbon can
be expressed via beam rigidity, as
depicted by Figure 3

e Currently 10 facilities that can provide
carbon ions for therapy

e China (2) Japan (5) Europe(3)
 All synchrotrons

* Cyclotrons are the workhorses of proton
therapy

Jordan.taylor@hud.ac.uk

Beam Rigidity (T-m)

Beam rigidity for ions up to carbon
showing the requirements for 30cm depth in water
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Figure 3. The bending radius necessary to bend the beam against}
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Why Helium?

* Used before at Berkeley (57-92) 8
* 2000 patients

e Physically
» Easiest to accelerate after protons — same MeV/u
* Less projectile fragmentation than carbon ions
* Half the MCS scattering and sharper Bragg peak compared to protons

* Biologically
* Treatment plan comparison found helium RBE and conformity effects carbon and protons?
* TRiP98 and LEM model
* Mass is closer to protons - He could be easier to model with less RBE uncertainties
* RBE values found correlate with data from Berkeley experiments

* Revival is not unrealistic
» Research has started in Heidelberg 1°(Apr 16)
* Interaction with matter study required as for carbon ions
* Canonly be studied at current carbon facilities
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Alms

Helium therapy feasibility study using an non scaling FFAG accelerator
* Non scaling allows fixed frequency acceleration - ease of use
* CW beam and ease of use like a cyclotron
* Variable energy like a synchrotron

isochronously accelerate He?" to 900MeV (225 MeV/u)
e 2 stage acceleration

deliberately designed with 4 = %

m
* Can accelerate C®* (225/u approximately ~10cm depth)

* If we can accelerate to 330 MeV/u we can image with H;
* Possibility to treat and image with the same machine
e Carbon range increases to ~20cm
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HEATHER Stage 1

e Superconducting ring with 4
identical magnets

* 0.5>400 MeV
* 2.5m radius N Z
* 600 KEV/turn - | I RF Cavities

[] Sector magnets
* 2 cavities @ 300KeV
* 350 turns

0.5 MeV through to 400 MeV
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e constant orbital frequency across all
energies
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* Initial overlapping fringe fields supress
TOF
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Tune map for HEATHER inner ring
S 1 - Tu n e S : comparing OPAL & COSY

400 MeV

* Frequency of oscillation around the
ideal orbit

Good agreement between COSY
and OPAL

Crosses the integer just after 1 MeV
- OK — demonstrated by EMMA @
Daresbury

Tune suppression caused by
overlapping fringe fields Figure 6. HEATHER Stage 1 tune map showing a comparison
between COSY and OPAL
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S1 - Acceleration

e Parabolic time of flight leads
to Serpentine acceleration

Energy (MeV)

* Fixed frequency of 10.338
MHz
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Figure 7. HEATHER Stage 1 RF Phase space plot L
/
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HEATHER Stage 2

e Superconducting racetrack

 Straights for extra space
* 400 > 900 MeV

3 x 3.5m radius
1 MeV/turn

Sector Magnets

* 2 cavities @ 500KeV ' e | W RF Cauvities
* 300 Turns
| W 2~ >
Figure 8. HEATHER stage 2 magnet layout showing stable orbits from 400 |~
MeV through to 900 MeV
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S 2 - | S O C h rO n I C |ty _ Isochronisity variation for HEATHE

main ring comparing COSY and OPAL

* Percentage difference compared
to the mean ToF over all energies
using COSY and OPAL

* Good agreement between the
two codes
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* Isochronous enough to accelerate 600 700
at fixed frequency RF Energy (MeV)
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Tune map for HEATHER main ring

S 2 - Tu n e S - comparing OPAL & COSY

400 MeV

* Tunes are acceptable

* Crosses no integer
resonances, just a 2" order -

and 2 3 order resonances - 900 MeV
OPAL

Figure 10. HEATHER stage 2 tune map showing the tune calculation
from COSY.
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S2 - Acceleration

e Serpentine acceleration

* Fixed frequency of 8.83
MHz

* Large phase acceptance
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Figure 11. HEATHER Stage 2 RF Phase space plot
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Next steps

e There is a lot of work to do

* Work being done on inserting counterbend magnets
* Improve tunes if we have issues

* Losses and emittance studies
* Inject a realistic beam into the accelerator

* Injection/extraction — variable energy
e Carol Johnstone’s idea

* Reaching 900 MeV

* It is possible (and beyond)
e Stand alone useful machines

Jordan.taylor@hud.ac.uk PPRIG workshop Dec 2016




Conclusions

* We need to increase the availability lon therapy

* Helium could be the compromise
* There is no superior lon - therapeutic advantage

* It is definitely feasible to accelerate He?* to 900MeV

Jordan.taylor@hud.ac.uk PPRIG workshop Dec 2016



If you are interested and want to get involved please get in touch!

University of
HUDDERSFIELD

International Institute
for Accelerator Applications

1. Tommasino, F., Scifoni, E., & Durante, M. (2015). New lons for Therapy. International Journal of Particle Therapy, 2(3), 428-438. Chicago
2.Pshenichnov, I., Mishustin, I. and Greiner, W., 2008. Comparative study of depth—dose distributions for beams of light and heavy nuclei in tissue-like media. Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms, 266(7), pp.1094-1098.
3.Grln, R., Friedrich, T., Kramer, M., Zink, K., Durante, M., Engenhart-Cabillic, R. and Scholz, M., 2015. Assessment of potential advantages of relevant ions for particle therapy: a model based study. Medical physics, 42(2), pp.1037-
1047.

4.Strobele, J., Schreiner, T., Fuchs, H. and Georg, D., 2012. Comparison of basic features of proton and helium ion pencil beams in water using GATE.Zeitschrift fir Medizinische Physik, 22(3), pp.170-178.
5.Fuchs, H., Alber, M., Schreiner, T. and Georg, D., 2015. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion. Medical physics, 42(9), pp.5157-5166.
6.Khan, F.M. and Gibbons, J.P., 2014. Khan's the physics of radiation therapy. Lippincott Williams & Wilkins.

7. Haettner, E., Iwase, H., Kramer, M., Kraft, G., & Schardt, D. (2013). Experimental study of nuclear fragmentation of 200 and 400 MeV/u 12C ions in water for applications in particle therapy. Physics in medicine and biology, 58(23),
8265.Chicago

8. PTCOG - Patient Statistics. (2016). Ptcog.ch. Retrieved September 2016, from http://www.ptcog.ch/index.php/patient-statistics
9. Raju, M. (1980). Heavy particle radiotherapy. New York: Academic Press.

10. 6. Kramer, M., Scifoni, E., Schuy, C., Rovituso, M., Tinganelli, W., Maier, A., ... & Parodi, K. (2016). Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality. Medical physics, 43(4), 1995-2004.



