HElium ion Acceleration for radioTHERapy

Jordan Taylor , Rob Edgecock University of Huddersfield Carol Johnstone, Fermilab

PPRIG workshop 1st - 2nd Dec 2016

Scope

Current particle therapy situation and why we should bother with helium

Helium ion acceleration with HEATHER

Conclusions

PPRIG workshop Dec 2016

Particle therapy

- Ion and proton therapy hold advantages over conventional radiotherapy
- Physical benefits
 - Dose distribution
 - the way the particles interact with matter
 - Linear energy transfer (LET)

- Biological benefits
 - Radiobiological effectiveness (RBE)

Ion therapy

- At the moment ion therapy just means carbon ions
- Advantages of Carbon ions over protons
 - Improved Dose distribution
 - Higher LET correlating to higher RBE
- Disadvantages
 - Variable high energy RBE difficult to model
 - Dose tail
 - Size of the required facility

Fragmentation

- Fragmentation is more prevalent in carbon ion therapy
 - secondary particles from inelastic nuclear interactions between the ion and the tissue - which adds to the total damage ¹⁻⁷
- The created low-z fragments have a longer range, creating a dose tail beyond the Bragg peak
 - problematic for organs at risk
- The use of lighter ions like helium have a reduced fragmentation tail ^{1-5,7}

Figure 2⁷. A description of the relative ionization against depth for 330 MeV/u carbon ions, highlighting the fragmentation tail.

Acceleration

- The difficulty in accelerating carbon can be expressed via beam rigidity, as depicted by Figure 3
- Currently 10 facilities that can provide carbon ions for therapy
 - China (2) Japan (5) Europe(3)
 - All synchrotrons
- Cyclotrons are the workhorses of proton therapy

Figure 3. The bending radius necessary to bend the beam against kinetic energy for fully stripped ions up to carbon

Why Helium?

- Used before at Berkeley (57-92)⁸⁻⁹
 - 2000 patients
- Physically
 - Easiest to accelerate after protons same MeV/u
 - Less projectile fragmentation than carbon ions
 - Half the MCS scattering and sharper Bragg peak compared to protons
- Biologically
 - Treatment plan comparison found helium RBE and conformity effects carbon and protons³
 - TRiP98 and LEM model
 - Mass is closer to protons He could be easier to model with less RBE uncertainties
 - RBE values found correlate with data from Berkeley experiments
 - Revival is not unrealistic
 - Research has started in Heidelberg ¹⁰(Apr 16)
 - Interaction with matter study required as for carbon ions
 - Can only be studied at current carbon facilities

Jordan.taylor@hud.ac.uk

PPRIG workshop Dec 2016

Aims

- Helium therapy feasibility study using an non scaling FFAG accelerator
 - Non scaling allows fixed frequency acceleration ease of use
 - CW beam and ease of use like a cyclotron
 - Variable energy like a synchrotron
- isochronously accelerate He^{2+} to 900MeV (225 MeV/u)
 - 2 stage acceleration
- deliberately designed with ^q/_m = ¹/₂
 Can accelerate C⁶⁺ (225/u approximately ~10cm depth)
- If we can accelerate to 330 MeV/u we can image with H_2^+
 - Possibility to treat and image with the same machine ullet
 - Carbon range increases to ~20cm ullet

HEATHER Stage 1

- Superconducting ring with 4 identical magnets
- 0.5 > 400 MeV
- 2.5m radius
- 600 KeV/turn
 - 2 cavities @ 300KeV
- 350 turns

Figure 4. HEATHER stage 1 magnet layout showing stable orbits from 0.5 MeV through to 400 MeV

S1 - Isochronicity

- constant orbital frequency across all energies
- Percentage difference compared to the mean ToF over all energies using COSY and OPAL
- Isochronous enough to accelerate at fixed frequency RF
- Initial overlapping fringe fields supress TOF

S1 - Tunes

- Frequency of oscillation around the ideal orbit
- Good agreement between COSY and OPAL
- Crosses the integer just after 1 MeV
 OK demonstrated by EMMA @
 Daresbury
- Tune suppression caused by overlapping fringe fields

S1 - Acceleration

- Parabolic time of flight leads to Serpentine acceleration
- Fixed frequency of 10.338 MHz
- Large phase acceptance

HEATHER Stage 2

- Superconducting racetrack
 - Straights for extra space
 - 400 > 900 MeV
- 3 x 3.5m radius
- 1 MeV/turn
 - 2 cavities @ 500KeV
- 300 Turns

S2 - Isochronicity

- Percentage difference compared to the mean ToF over all energies using COSY and OPAL
- Good agreement between the two codes
- Isochronous enough to accelerate at fixed frequency RF

S2 - Tunes

- Tunes are acceptable
- Crosses no integer resonances, just a 2nd order and 2 3rd order resonances

Figure 10. HEATHER stage 2 tune map showing the tune calculation from COSY.

S2 - Acceleration

- Serpentine acceleration
- Fixed frequency of 8.83 MHz
- Large phase acceptance

Next steps

- There is a lot of work to do
 - Work being done on inserting counterbend magnets
 - Improve tunes if we have issues
 - Losses and emittance studies
 - Inject a realistic beam into the accelerator
 - Injection/extraction variable energy
 - Carol Johnstone's idea
- Reaching 900 MeV
 - It is possible (and beyond)
 - Stand alone useful machines

Conclusions

- We need to increase the availability Ion therapy
 - Helium could be the compromise
 - There is no superior Ion therapeutic advantage
- It is definitely feasible to accelerate He^{2+} to 900MeV

Thank you

If you are interested and want to get involved please get in touch!

1. Tommasino, F., Scifoni, E., & Durante, M. (2015). New Ions for Therapy. International Journal of Particle Therapy, 2(3), 428-438. Chicago

2.Pshenichnov, I., Mishustin, I. and Greiner, W., 2008. Comparative study of depth-dose distributions for beams of light and heavy nuclei in tissue-like media. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(7), pp.1094-1098.

3. Grün, R., Friedrich, T., Krämer, M., Zink, K., Durante, M., Engenhart-Cabillic, R. and Scholz, M., 2015. Assessment of potential advantages of relevant ions for particle therapy: a model based study. Medical physics, 42(2), pp.1037-1047.

4. Ströbele, J., Schreiner, T., Fuchs, H. and Georg, D., 2012. Comparison of basic features of proton and helium ion pencil beams in water using GATE.Zeitschrift für Medizinische Physik, 22(3), pp. 170-178.

5. Fuchs, H., Alber, M., Schreiner, T. and Georg, D., 2015. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion. Medical physics, 42(9), pp.5157-5166.

6.Khan, F.M. and Gibbons, J.P., 2014. Khan's the physics of radiation therapy. Lippincott Williams & Wilkins.

7. Haettner, E., Iwase, H., Krämer, M., Kraft, G., & Schardt, D. (2013). Experimental study of nuclear fragmentation of 200 and 400 MeV/u 12C ions in water for applications in particle therapy. Physics in medicine and biology, 58(23), 8265. Chicago

8. PTCOG - Patient Statistics. (2016). Ptcog.ch. Retrieved September 2016, from http://www.ptcog.ch/index.php/patient-statistics

9. Raju, M. (1980). Heavy particle radiotherapy. New York: Academic Press.

10. 6. Krämer, M., Scifoni, E., Schuy, C., Rovituso, M., Tinganelli, W., Maier, A., ... & Parodi, K. (2016). Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality. Medical physics, 43(4), 1995-2004.