

The Clatterbridge Cancer Centre NHS Foundation Trust

Imaging of prompt gamma emissions during proton cancer therapy for geometric and dosimetric verification

Optimisation of Compton Camera system

Dr. Benjamin Le Crom University of Liverpool, Nuclear physics group

Proton Physics Research and Implementation Group workshop December, 2nd 2016

Overview

- Advantages of protontherapy
- Methods of proton tracking
 - β^+ emission
 - Prompt y emission
 - Prompt γ imaging methods
- Pulse Shape Analysis to localise the proton range
 - Reconstruction code
 - Spin-off of AGATA technology
 - Prospectus + third layer (GRI+)
- Optimisation of Compton Camera system
 - Simulation with GAMOS
 - Tests with sources at the University of Liverpool
- Perspectives for the project
 - Measurements of radiation and neutron background at the Clatterbridge cancer centre
 - Improving the image reconstruction code (Poster: Andrea Guttierrez UCL)
 - Measurements in realistic conditions at Clatterbridge cancer center

Protontherapy: advantage and limit

Advantage comparing with photontherapy

- Proton → **sharp Bragg Peak**
- Radiation dose close to tumour dimension, sparing surrounding normal tissues
- Very suitable for childhood cancers (increasing success rate and reducing side effect)

- Only one protontherapy centre in United Kingdom: **The Clatterbridge Cancer Centre**
- United Kingdom would like to build two new protontherapy centres:
 Christie Hospital at Manchester (Talk M.J. Merchant)
 - University College London Hospital
- However, **uncertainties** can lead to serious adverse efects
 - *in-vivo* proton range verification during therapy

Proton tracking: β^+ and prompt y emission

- Nuclear interaction in proton therapy creates a lot of secondary products:
 - β^+ emitting isotopes
 - → Two 511 keV γ → Positron Emission Tomography → Proton range
 - 1-2 mm accuracy in well-coregistered bony structure Parodi K et al (2007b) Int. J. Radiat. Oncol. Biol. Phys. 68 920–34
 - In general verification accuracy is around 5-10 mm Knopf A C et al (2011) Int. J. Radiat. Oncol. Biol. Phys. 79 297–304
 - Simulations need to be corrected for biogical washout
 - Relevant cross-section no know for isotope production in tissues (no thin target)
 - Prompt y emission
 - ➤ Lack of biological washout
 - Higher γ-prompt production rate than 511keV production rate (at least 10 times higher) Moteabbed M, España S, Paganetti H. Phys Med Biol (2011) 56:1063-82
 - → PG distribution is closer to the dose falloff than the PET distribution
 - Prompt γ has high energy \rightarrow **Low detection efficiency**
 - → Need to develop an algorithm for 3D dose reconstruction

Prompt y imaging

- Slit camera
- Need to use a collimator
 - Low statistics
- ➔ 1D distribution
- 1-2 mm standard deviation on range estimation J.Smeets et al 2012 Phys. Med. Biol. 57 3371

• Compton camera

- → 2D or 3D distribution
- Coincidence between the different layers
 - Low statistics
- 6 DSSD + LaBr₃:Ce scintillator
- > Electron tracking \rightarrow only Compton arc
- Spatial resolution of 5.5 mm
 P.G.Thirolf et al. EPJ Web of conferences 117, 05005 (2016)
- 2 High-Pure Germanium detector + Ge coaxial detector
- Correct efficiency of Ge with high E γ-rays
 - Statistics can balance the absence of electron tracking
- Pulse Shape Analyse can give very precise position of interaction

P.G.Thirolf et al. EPJ Web of conferences 117, 05005 (2016)

Image reconstruction code

Analytic reconstruction code created by **Dr. D. Judson (University of Liverpool)** Method: use of geometrical properties of conic sections

$$\cos(\theta) = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_0}\right) \qquad E_1 + E_2 = E_0$$

Image reconstruction code

Analytic reconstruction code created by **Dr. D. Judson (University of Liverpool)** Method: use of geometrical properties of conic sections

$$\cos(\theta) = 1 - m_e c^2 (\frac{1}{E_2} - \frac{1}{E_0}) \qquad E_1 + E_2 = E_0$$

Image reconstruction code

Analytic reconstruction code created by **Dr. D. Judson (University of Liverpool)** Method: use of geometrical properties of conic sections

$$\cos(\theta) = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_0}\right) \qquad E_1 + E_2 = E_0$$

Pulse Shape Analysis: Spin-off of AGATA

Technology transfer from fundamental nuclear physics to medical physics

Ideal case: Pulse Shape Analysis can give a **1mm³ precision** *R.J. Cooper et al. NIM A 573(2007) 72-75*

AGATA: Advanced Gamma Tracking Array

SPECT: Single Photon Emission Computed Tomography

Prospectus

- First application of AGATA technology PSA in medical physics
- Scatterer SiLi and Absorber HPGe in one cryostat
- Detector head sensitivity maximised for ^{99m}Tc (141 keV γ) and works also for ¹³¹I (364 keV γ)
 → Wild energy range with one system
- **Sensitivity is 10 times higher** than LEHR collimated SPECT detector heads
- Position resolution is around 2-3 mm
- MRI-compatible
 - Anatomical and Functional Imaging
- L.J.Harkness et al.(2010) IFMBE proceedings 25(2):102-105

Imaging reconstruction

SPECT: Single Photon Emission Computed Tomography

Benjamin.Le-Crom@liverpool.ac.uk

LEHR: Low Energy High Resolution

Prospectus + third layer (GRI+)

- Imaging to check the entended proton treatment delivery
 - Geometrical placement of the beam (range verification)
 - Verification of delivered radiation dose
- Prompt γ energies:
 - → ${}^{12}C(p,p){}^{12}C*: 4.4 \text{ MeV}$
 - → ${}^{16}O(p,p){}^{16}O*: 6.0 \text{ MeV}$
- Neutron capture by proton:
 - → p(n,γ)d : 2.2 MeV
- Need a third layer to know the energy of the incoming $\gamma\text{-rays}$
- Low detection efficiency for high energy γ-rays

Prospectus + third layer (GRI+)

- Three layers Compton System:
 - → Si(Li) detector as the first scatterer detector
 - → High-Pure Ge detector as the second scatterer detector
 - Coaxial germanium detector as the absorber detector
- A full triple layers Canberra Compton Camera

Simulation using GAMOS

Geant4-based Architecture for Medicine-Oriented Simulations P. Arce et al. NIM A 735(2014)304-313 L.J. Harkness et al. NIM A 671(2012)29-39 (Compton Camera part)

- 2 HPGe detectors 60x60x20 mm³ (5x5x20 mm³ granularity)
- Ge coaxial detector

Simulation using GAMOS

Geant4-based Architecture for Medicine-Oriented Simulations P. Arce et al. NIM A 735(2014)304-313 L.J. Harkness et al. NIM A 671(2012)29-39 (Compton Camera part)

- 1.836 MeV γ -rays cone emission simulation
- 5 keV energy resolution (experimental measurement)

Measurements at the University of Liverpool

• Measurements were performed by L.Thomas and PhD students in November 2016

⁸⁸Y source

Measurements

FWHM: 23.07 ± 0.59 mm

FWHM: 24.34 ± 0.13 mm

Measurements at the University of Liverpool

• Measurements were performed by L.Thomas and PhD students in November 2016

⁸⁸Y source

Measurements

- If we use the Pulse Shape Analysis
- Need to study the electric field behaviour in the detector

Perspectives for the project

- The set-up and the acquisition system are working well
- Simulations and measurements are very close → Confidence in the GAMOS simulation
- PSA should permit to have a precision better than 6.5 mm

Current work

- Improving Reconstruction Code (iterative code) by Dr Andrea Gutierrez (UCL)
- Keeping analysing data measurements performed last November (⁸⁸Y and ⁶⁰Co)
- Improving simulations including more details about the proton beam and the set-up
- Study of electric field behaviour in detectors to use PSA

Expected planning

- Radiation and neutron background measurements at Clatterbridge cancer centre in January 2017
- Measurements using the Compton Camera system at Clatterbridge cancer centre in summer 2017

Collaboration

- Nuclear Physics group, Department of Physics, University of Liverpool, UK Benjamin Le Crom, Leya Thomas, Andrew Boston
- Medical Physics Department, The Royal Berkshire NHS Foundation Trust, UK Colin Baker
- Department of Medical Physics and Biomedical Engineering, University College London, UK Andrea Gutierrez, Robert Moss, Robert Speller
- National Centre for Eye Proton Therapy, The Clatterbridge Cancer Centre NHS Foundation Trust, UK

Andrzej Kacpereck

Thank you for your attention

Different fits

GAMOS output

Output: COMPCAM x1 y1 z1 e1 x2 y2 z2 e2

e2 = e' +e"