# Issues and Challenges for Imaging in Proton Radiotherapy

Philip Evans, Centre for Vision Speech and Signal Processing, University of Surrey

NPL PPRIG Proton Therapy Physics Workshop March 2014

# Need for Imaging in Proton Radiotherapy

- Correction patient model
  - Set-up positioning
  - Anatomy model in treatment planning system
- Correct dosimetry
  - Dose distribution
  - Beam energy and profile
  - Range measurement

### How to Image

- Projection radiography
  - kV X-ray of treatment portal
  - Proton beam
- Tomograph
  - X-ray kVCT
  - рСТ
- Beam monitoring
  - Beam penumbra imaging
  - Range in phantom
- Interaction of patient with beam
  - In-vivo dosimetry approach

# Challenges of kV Imaging and Stopping Power

- Relationship between x-ray and proton attenuation?
  - H or  $\mu/\rho$  (120 keV)  $\Rightarrow$  S/ $\rho$  (150 MeV)?
  - Spectral effects?
  - Look-up table
  - Stoichiometric approach effects of H content
  - Dual energy CT
- Protons
  - Still need to extrapolate
  - S/p (high MeV)  $\Rightarrow$  S/p (150 MeV)

## Proton Radiography

- Image high energy protons passing through patient
  - Integral of stopping power
  - Halo effect scattered radiation
- Need to correct for scattering artefacts for high spatial resolution

# Proton CT

- Needs data to satisfy CT requirements
  - Multiple angles encompass object extent
  - Broad beam and gantry?
- Proton interactions v. photon interactions
  - Photons travel in straight lines and either pass through or are absorbed
  - Protons scatter and almost always pass through but with distorted path

### Proton CT

- Protons scatter and almost always pass through but with distorted path
  - Need to track path and measure energy
  - Range telescope concept



## Proton CT

- Entrance and exit telescope measure path and position of each proton
- Energy/range detector measures energy
- Combine for CT reconstruction



### **Image Reconstruction**

- Protons do not travel in straight lines
  - Estimate path of protons for image reconstruction
  - Cubic spline
  - Most likely path
  - Others?



# **Proton CT Approaches**

- Paul Scherrer Institut
  - Tracking: fibre hodoscope, Range: plastic scintillator
- Loma Linda
  - Tracking: silicon strips, Range: Csl calorimeter
- AQUA/ENVISION
  - Tracking: gas electron multipliers, Range: plastic scintillator
- PRIMA
  - Tracking: silicon strips, Range: YAG:Ce calorimeter

#### PRaVDA – Proton Radiotherapy Verification

#### and Dosimetry Applications

- Integrated computed tomography and dosimetry instrument for proton therapy



## **Beam Monitoring**

- Liverpool/Clatterbridge Solution
  - Array of strip detectors to measure beam halo

### **Range Uncertainties**

- Proton radiotherapy accuracy relies on accurate knowledge of proton range
  - Statistics of range: Mean and spread
  - Variation with characteristics
- Measure with purpose built phantom
- Knopf and Lomax, PMB, **58**, R131, 2013

### Multi-Layer Faraday Cup

- Measure beam range
- Faraday cup
  - Standard method of measuring charged particle beams
    - measure current in metal collector
  - Multi-Layer, stack of plates
    - Measure current at set of depths – energy information



# Model of anatomy on Day of Treatment

- Imaging on treatment set
  - Image guided radiotherapy
  - Adaptive radiotherapy
- Similar imaging challenge to x-ray radiotherapy
  - Many of the x-ray methods have been studied
- Proton imaging

## **Imaging Beam Interactions**

- In-beam PET
  - EU Envision project
  - PET camera in treatment room
  - Detects positron decays from (p,x) reactions fragmentation, evaporation

### **In-Beam PET**

- First demonstrations of in-beam PET becoming available
- New imaging methods?
  - Time of Flight



## Conclusions

- Imaging challenges in proton radiotherapy
  - Anatomy at treatment
  - Rad/tissue interaction
  - Beam characteristics
- Methods
  - Radiography
  - CT
  - Beam imaging
  - Dose deposition

## Acknowledgements

#### PRaVDA

Surrey – Gavin Poludniowski Lincoln – Nigel Allinson, Michela Esposito, Chris Waltham, Grainne Riley Birmingham – Stuart Green, Tony Price, David Parker Liverpool – Phil Allport, Jon Taylor, Gian Casse, Ilya Tsurin Coventry – Spyros Manolopoulos iThemba/UoCT – Jaime Nieto-Camero, Julyan Symons, Steve Peterson ISDI Ltd – Thalis Anaxagoras Aspect Systems – Marcus Verhoeven, Frank Laube