Dosimetric Characterisation of Glass Bead TLDs in Proton Beams

Shakardokht M. Jafari1, 2,*, Russell Thomas3, D. A. Bradley1, N. M. Spyrou1, A. Nisbet1, 4, C. H. Clark1,3,4

1Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, UK
2Radiology Department, Faculty of Medicine, Kabul Medical University, Kabul, Afghanistan
3National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
4Department of Medical Physics, Royal Surrey County Hospital NHS Trust, Guildford, GU2 7XX Surrey, UK

PPRIG Proton Therapy Physics Workshop At the National Physical Laboratory, 12th – 13th March
Motivation for use of glass bead TLDs for Proton Dosimetry

- Spherical physical shape with a hole in the middle
- Chemically inert nature
- Small size of 1.5 mm diameter and 1 mm thickness
- Inexpensive and readily available
- Reusable
- TL light transparency with negligible self-attenuation
Methods

- Sample preparation
 - Cleaning
 - Mass screening
 - Annealing
Characterization measurements

A thin window (0.1 mm thickness) phantom to position the glass beads in water.

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March
Readout systems?

TLD reader at Royal Surrey County Hospital
Dosimetric peak with TL system

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March
Mass Attenuation Coefficient

Table:

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>8.93</td>
<td>14.38</td>
</tr>
<tr>
<td>O</td>
<td>42.18</td>
<td>51.01</td>
</tr>
<tr>
<td>Na</td>
<td>10.55</td>
<td>8.88</td>
</tr>
<tr>
<td>Al</td>
<td>1.35</td>
<td>0.97</td>
</tr>
<tr>
<td>Si</td>
<td>33.62</td>
<td>23.16</td>
</tr>
<tr>
<td>K</td>
<td>1.09</td>
<td>0.54</td>
</tr>
<tr>
<td>Ca</td>
<td>1.92</td>
<td>0.93</td>
</tr>
<tr>
<td>Fe</td>
<td>0.37</td>
<td>0.13</td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Density: 2.09
CT Number: 800-1300
Bead mass and radiation response

\[y = 4059.6x + 5815.4 \]

\[R^2 = 0.9978 \]

- No self absorption
- Important to use for high LET radiation beams such as proton and ion beam dosimetry
Radiation response to photon beams

\[y = 43.023x - 86.899 \]
\[R^2 = 0.9999 \]

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March
Radiation response to proton beams

\[y = 33.065x - 9.4796 \]
\[R^2 = 0.9998 \]

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March
Dose rate response (photon Beams)

Average TL Yield × 10^2

Dose Rate (cGy/min)

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March
Dose rate response (proton Beams)

![Bar graph showing dose rate response for proton beams. The y-axis represents TL Yield ranging from 200 to 450, and the x-axis represents Dose Rate (Gy/min) ranging from 5 to 100. Errors are shown using error bars.](image-url)
Proton beam profile

First experiment

Second experiment

Normalised dose vs. mm
Batch homogeneity & reproducibility

Batch homogeneity: $\pm 7.4\%$ (2 SD)

Uncertainty of the entire TLD process:
1.7% (1 SD)

Mean reproducibility for 138 dosimeter:
Within 0.23% (2 SD)

TL Yield$ \times 10^3$

Dosimeter Number

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March
Directional response

45° 0° 90°

[Image of TL Yield vs Angle of incidence photons (deg.)]

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March
Energy response

![Bar chart showing energy response for different beam energies.](image)

- 80 kV: High TL Yield
- 140 kV: Lower TL Yield compared to 80 kV
- 250 kV: Moderate TL Yield
- 6 MeV: Moderately low TL Yield
- 9 MeV, 12 MeV, 16 MeV, 20 MeV: Similar low TL Yield
- 6 MV, 10 MV, 15 MV: Further decrease in TL Yield

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March
Thermal neutron response

- The neutron absorbed dose / Gy for 15 MV energy

 0.28×10^{-3} Gy,

 in agreement with 0.27×10^{-3} Gy (McGinley and Landry, 1989) measured with Bonner sphere radiation detectors.
Storage & handling

Light sensitivity and Pre-dose effect

- after 24 hours storage in the dark
- immediately after annealing

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March
Fading Rate: 10%/30 days

- 2 days after radiation
- 30 days after radiation

(TL yield/unit dosimeter) × 10^3

Channel Number

EPR signal × 10^3

Channel Number

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March
Conclusion

- The dose linearity and dose rate independency shown suggest that glass beads have potential as TLDs for verification measurement in proton therapy.

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March
Acknowledgment

- University of Surrey for an Overseas Research Scholarship
- Radiotherapy Department of the Royal Surrey County Hospital (RSCH) for the facilities for irradiations
- National Physical Laboratory
- Clatterbridge Cancer Centre NHS Trust for the facilities for proton irradiations
- Schlumberger foundation for the Faculty for The Future Scholarship
References

THANKS FOR YOUR ATTENTION

QUESTIONS

?
Reproducibility of calibration factors at different energies

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March