Dosimetric Characterisation of Glass Bead TLDs in Proton Beams

Shakardokht M. Jafari^{1, 2,*}, Russell Thomas³, D. A. Bradley¹, N. M. Spyrou¹, A. Nisbet^{1, 4}, C.

H. Clark^{1,3,4}

¹Department of Physics, University of Surrey, Guildford, Surrey, GU₂ ₇XH, UK

²Radiology Department, Faculty of Medicine, Kabul Medical University, Kabul, Afghanistan ³National Physical Laboratory, Teddington, Middlesex TW11 oLW, U.K

⁴Department of Medical Physics, Royal Surrey County Hospital NHS Trust, Guildford, GU₂ ₇XX Surrey, UK

Motivation for use of glass bead TLDs for Proton Dosimetry

- Spherical physical shape with a hole in the middle
- Chemically inert nature
- Small size of 1.5 mm diameter and 1 mm thickness
- Inexpensive and readily available
- Reusable
- **TL light transparency** with negligible selfattenuation

Methods

- Sample preparation
 - Cleaning
 - Mass screening
 - Annealing

Characterization measurements

A thin window (0.1 mm thickness) phantom to position the glass beads in water. Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March

Readout systems?

TLD reader at Royal Surrey County Hospital

Dosimetric peak with TL system

Bead mass and radiation response

Radiation response to photon beams

Radiation response to proton beams

Dose rate response (photon Beams)

Dose rate response (proton Beams)

Proton beam profile

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March

Batch homogeneity & reproducibility

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March

Directional response

Energy response

Thermal neutron response

The neutron absorbed dose / Gy for 15 MV energy
0.28 × 10⁻³ Gy,

in agreement with 0.27×10^{-3} Gy (McGinley and Landry, 1989) measured with Bonner sphere radiation detectors.

Storage & handling

Light sensitivity and Pre-dose effect

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March

Fading Rate: 10%/30 days

Jafari et al., PPRIG Proton Therapy Physics Workshop, At the National Physical Laboratory, 12th – 13th March

Conclusion

• The **dose linearity** and **dose rate independency** shown suggest that glass beads have potential as TLDs for verification measurement in proton therapy.

Acknowledgment

- University of Surrey for an Overseas Research Scholarship
- Radiotherapy Department of the Royal Surrey County Hospital (RSCH) for the facilities for irradiations
- National Physical Laboratory
- Clatterbridge Cancer Centre NHS Trust for the facilities for proton irradiations
- Schlumberger foundation for the Faculty for The Future Scholarship

Refrences

- D. A. Bradley, Siti F. Abdul Sani, Amani I. Alalawi, S.M. Jafari, Noramaliza M.Noor, Hairul Azhar A. R, Ghafour Amouzad Mahdiraji, Nizam Tamchek, A. Nisbet (2014). Development of tailor-made silica fibres for TL dosimetry. <u>*Radiation Physics and Chemistry</u>*, in press.</u>
- Jafari, S.M, Bradley, D. A., Goldstone, C.A., Sharpe, P.H.G., Alalawi, A.I., Jordan, T.J., Clark, C.H., Nisbet, A., Spyrou, N. M., 2014. Low-cost commercial glass beads as dosimeters in radiotherapy. *Radiation Physics and Chemistry*, 97 95-101
- Jafari, S.M., Jordan, T.J., Hussein, M., Bradley, D.A., Clark, C.H., Nisbet, A., Spyrou, N.M., (2014) Energy response of glass bead TLDs irradiated with radiation therapy beams. *Radiation Physics and Chemistry*, in press.
- Jafari, S. M., Distefano, G., Bradley, D. A., Spyrou N. M., Nisbet, A., Clark, C. H., 2014. Validation of glass bead TLDs for radiotherapy treatment verification. European society for radiotherapy and oncology conference 33 (ESTRO33) 4-8 April 2014 Vienna Austria.
- McGinley P. H. and Landry J. C., 1989. Neutron contamination of x-ray beams produced by the Varian Clinac 1800. Phys. Med. Biol 34 (6) 777-783.
- R. Thomas, S. M. Jafari, D. A. Bradley, N. M. Spyrou, A. Nisbet, C. H. Clark, Dosimetric characterisation
 of glass bead TLDs in proton beams. European society for radiotherapy and oncology conference 33
 (ESTRO33) 4-8 April 2014 Vienna Austria.

THANKS FOR YOUR ATTENTION

QUESTIONS

Reproducibility of calibration factors at different energies

