

Targeted cell irradiation at the Surrey Vertical Beam

Surrey Ion Beam Centre

Mike Merchant, Charlie Jeynes, AnKa Wera, Karen Kirkby

m.merchant@surrey.ac.uk

Introductions...

Charlie Jeynes Surrey Ion Beam Centre

Anne-Catherine Wera Surrey Ion Beam Centre SPRITE

Karen Kirkby Surrey Ion Beam Centre

The Surrey Vertical Beam www.surrey.ac.uk

Surrey Vertical Beam Facility

- OM-52 magnetic quadrupole focussing triplet.
- lons from:
 - duo-plasmatron
 - sputter source.
- 2 MV Tandem

2 MV Tandem -

• Beams from H, to Ca (Although Ca doesn't go very far through the cell!)

www.surrey.ac.uk

Microscope designed by Gray Cancer Institute, Oxford

Beam Nozzle and Cell Dish

Targeting Accuracy

Do we hit what we aimed at?

- Single 3 MeV proton hits in CR-39
- Targeting within 5 um
- However, hit 100% of nuclei targeted, so good enough for radiobiology at present.
- STIM diode very good for counting single ions (>98% accuracy)
- Development of electrostatic scanning system will improve targeting to ~ 1 micron.

Beam Scanning

Scanning Plates Lens

 Electrostatic dog-leg scanning system scans into the principle planes of the lens for very low scanning aberration.

- Electrostatic dog-leg scanning system scans into the principle planes of the lens for very low scanning aberration.
- Can scan 500 um x 500 um
- Better accuracy than using stage to position cell over beam.

CHARM for cell recognition

- Developed by Gray Institute for Radiation Oncology and Biology
- Uses many parameters to find cells:
 - Edge strength, size, circularity, intensity, etc.
- Sometimes struggles with clustered cells...

Targeted cells stained with the antibody anti- γ H2AX to show double strand breaks where the beam has irradiated the cells 3.8 MeV H⁺, 5 Gy irradiation

TABLE 1

The Range in Water (in Microns) of a Selection of Ions that can be Injected into the VNB as a Function of the Charge State after Stripping and Corresponding Energy Calculated in SRIM (33). The Energy is Constrained by the 2 MV Terminal. The Heaviest Element that can be Bent Up Tower by the 90° Magnet is Calcium

Charge state	1	2	3	4	5
Energy (MeV)	4	6	8	10	12
Ion					
¹ H	241				
⁴ He	29.2	48.4			
⁷ Li		20.7			
¹² C			11.4	13.8	16.5
¹⁶ O			9.3	10.9	12.5
²⁰ Ne			8.8	10.0	11.2
³⁵ Ci					8.6
⁴⁰ Ca					8.0

Broad-field irradiation

• Setting up the beam, checking stability and fluence of the beam takes about ½ day.

- Each "droplet" takes about 2 minutes to irradiate and so about 12 minutes to do a full dish of 6 "droplets". This does depend on the dose given.
- Also extra time is needed between dishes to check on the fluence of the beam.

Broad-field irradiation

Broad-field particle tracks in CR39 plastic

Physics/ Dosimetry

$$\dot{D} = 1.6 \ e^{-9} \ \frac{LET \ .\Phi}{\rho} \ (Gy/s)$$

LET: Linear Energy Transfer (keV/µm)

Φ : Beam Flux (particles/cm².s)

AND POISSON STATISTICS

$$p(n) = \frac{(N\omega_0)^n}{n!} e^{-N\omega_0}$$

n: number of hit(s) N $\leq > \Phi$ $\omega_0 \leq >$ nucleus area

<u>What can we do?</u>

LET: Beam straggling

> Mono-energetic beam produce by the accelerator, no scattering foil Variation across the cell thickness

> Work with higher energy (3 MeV proton instead of 1 MeV proton)

> Calculation of the energy loss

 Φ :In-homogeneity

> Homogeneity assessment with CR39

Beam current variation

> Check beam stability before irradiation

What can we do?

Poisson statistics:

> Less important with higher fluences

Unit Average dose (Gy)	Average number of particles per cell Particles		Standard deviation of particles assuming Poisson distribution Particles		Dose uncertainty contribution due to Poisson statistics Gy		Dose uncertainty contribution due to volume-averaged LET variation Gy		Dose uncertainty due to flux variation (5 %) Gy	
	0.5		2		1.41		0.35		0.004	
1	28	4	5.52	1.85	0.20	0.46	0.003	0.008	0.05	0.05
2	56	8	7.43	2.87	0.27	0.72	0.006	0.016	0.10	0.10
3	84	12	8.98	3.45	0.32	0.87	0.008	0.024	0.15	0.15
4	112	16	10.26	3.99	0.37	1.00	0.011	0.032	0.20	0.20
5	138	20	11.52	4.47	0.41	1.12	0.014	0.040	0.25	0.25
6	166		12.73		0.46		0.017		0.30	
L										
	Poisson statistics						LET		Φ	

Table 2 Contributions to the dose uncertainty

Jeynes *et al.* (2012) Radiation and Environmental Biophysics

Plating Efficiency

Number of cells seeded & Number of counted colonies

AND Biological system variation

<u>What can we do?</u>

Plating Efficiency: Number of cells seeded > Seed cells from the same solution, count them after seeding, ... Colony counting > Work with appropriate dilution

Biological system:

> Replicates

Analysis of Survival Curve considering cell size - Broadbeam

Wera et al. (2014) Phys. Med. Biol

Thanks for listening!!