

Absolute and Relative Dosimetry of Proton Beams

Hugo Palmans

MedAustron, Wiener Neustadt, Austria and National Physical Laboratory, Teddington, UK

Overview

Absolute dosimetry

- ---- Primary standards: calorimetry, Faraday cup,...
- ---- Reference dosimetry: ionisation chambers

Relative dosimetry

- Depth dose measurements; quenching
- Lateral measurements, position sensitive detection

Examples from literature and NPL Specific issues scanned beams

MedAustron 🎴

Absolute dosimetry - Fluence based methods

Faraday cup - collimator scatter

Faraday cup - collimator scatter

Absolute dosimetry - Activation measurement

¹²C(p,pn)¹¹C reaction $4\pi \beta\gamma$ -coincidence counting

(Nichoporov 2003, Med Phys 30:972-8)

Faraday cup - scanned beams

Large area ion chamber: pdd(z) Faraday cup: N/MU S/p: DAP(z_{ref}) Integrate lateral dose profiles over all spots

7

NPLO

Calorimetry

Absorbed dose = energy imparted per unit of mass Calorimetry directly determines energy imparted by either

- Comparing with electrical energy dissipation
- --- Measuring temperature rise

Assumes medium doesn't change its physical or chemical state

Accounts with contributions/absorptions from nuclear reactions

± no particle type dependence

Calorimetry - principle

$$D = c \cdot \Delta T$$

·	c (J∙kg⁻¹∙K⁻¹	∆ <i>T/D</i>) (mK∙Gy⁻¹)	α (m²⋅s⁻¹)
water	4180	0.24	1.44×10 ⁻⁷
graphite	710	1.41	0.80×10 ⁻⁴

NPLO

Calorimetry for proton beams

At least 15 papers in the past 20 years so it's a proven technique

No primary standards

- Lack of interest/demand
- --- No beams in NMI
- Not much in scanned beams
- ---- Relatively new modality
- --- Calibration methods not established/standardised

MedAustron 🎴

Water calorimetry - chemical heat defect

NPL

MedAustron 🎴

Palmans et al (1996) Med. Phys. 23:643-50

Water calorimetry - heat conduction

PPRIG workshop, Teddington UK, 12-13 Mar 2014

Vorlage / template. ZA000 10700 1310013, Vers4.0

Graphite calorimetry

Palmans et al (2004) Phys Med Biol 49:3737

PPRIG workshop, Teddington l

Graphite calorimetry

Palmans et al (2004) Phys Med Biol 49:3737

Operational mode	Measurand	Primary expression	Corrections
Quasi-adiabatic radiation	$rac{E_{ m rad}}{m_{ m core}}$	$= c_p \Delta T_{\text{core}}$	$-\frac{\Delta E_{\rm transfer}}{m_{\rm core}}$
Quasi-adiabatic electrical	$c_p \Delta T_{\rm core}$	$=\frac{\Delta E_{\rm elec}}{m_{\rm core}}$	$+\frac{\Delta E_{\text{transfer}}}{m_{\text{core}}}$
Isothermal	$\frac{E_{\rm rad}}{m_{\rm core}}$	$= -\frac{\Delta E_{\text{elec}}}{m_{\text{core}}}$	$+c_p \Delta T_{\text{core}} - \frac{\Delta E_{\text{transfer}}}{m_{\text{core}}}$
PERIG workshop. Terdinaton I	ijens and Dua	ne (2009) Metrologia	16:S39-58 Core Inner jacket Outer Annular PCB

Graphite - heat defect?

Schulz et al (1990) Phys. Med. Biol. 35:1563-74

Dose conversion graphite calorimetry

$$D_w(z_w) = D_g(z_g) \cdot \left(\frac{S}{\rho}\right)_g^w ?$$

Dose conversion graphite calorimetry

PPRIG workshop, Teddington UK, 12-13 Mar 2014

Vorlage / template. ZA000_10700_1310013, Vers4.0

NPL

Graphite calorime

NPL

MedAustron 🎴

MedAustron 🎴

Graphite calorimetry - dose-areaproduct

Large area ion chamber: pdd(z)Faraday cup: N/MU S/p: DAP(z_0 or z_{ref}) Integrate lateral dose profiles over all spots

21

Reference dosimetry with ion chambers

TRS-398 ICRU report 78 $k_{Q} = \frac{M_{corr,Q} N_{D,w} k_{Q}}{\left[w_{air} \cdot \left(\frac{\overline{L}}{\rho}\right)_{air}^{w} \cdot P_{wall} P_{cel} P_{repl}\right]_{p}}{\left[W_{air} \cdot \left(\frac{\overline{L}}{\rho}\right)_{air}^{w} \cdot P_{wall} P_{cel} P_{repl}\right]_{calibr}}$

 $(w_{air})_p = 34.2 \text{ J/C}$ based mainly on calorimetry data

 $\left\| \left(\frac{L}{\rho} \right)_{oir}^{"} \right\|$ from Medin and Andreo 1997, Phys Med Biol 42:89

$$[P_{wall}P_{cel}P_{repl}]_{p} = 1$$

Residual range – beam quality for protons

$W_{\rm air}$ / protons

TRS-398

W_{air} / protons

TRS-398

Jones 2006 RPC 75:541

Stopping powers – protons versus electrons

 $\tau = \mathbf{F}_{t} / \mathbf{F}_{est}$

Electron slowing down spectrum

(Medin and Andreo 1997, Phys Med Biol 42:89-105)

NPLO

Secondary electron perturbations

Palmans et al. (2011) Proc IDOS, IAEA-CN182-230

MedAustron 🎴

Ion chamber dosimetry of scanned beams

Ion recombination I

Analogy IMRT beams: Palmans et al. 2010 Med. Phys. 37 2876-2889

MedAustron M

Ion recombination II

Continuous

Pulsed

PBS

Reference dosimetry scanned beams

Jaekel 2004

 $D_{w,Q}^{cyl} = M_Q^{cyl} N_{D,w,Q_0}^{cyl} k_{Q,Q_0}^{cyl}$

 $N = \frac{D_{w,Q}^{cy\iota} \Delta X \Delta Y}{(S/\rho)_w}$

Reference dosimetry scanned beams

Gillin 2010

$$DAP_{w,Q}^{BP} = M_Q^{BP} N_{DAP,w,Q_0}^{BP} \kappa_{Q,Q_0}^{BP}$$

$$N = \frac{DAP_{w,Q}^{BP}}{(S/\rho)_W}$$

Relative dosimetry

Lateral profiles in general not problematic (except for volume averaging in small fields)

Depth dose profiles: LET dependence! Resulting in an under response in the Bragg peak

--- Single hit theory (saturation of the sensitive site with one ionisation), e.g. alanine, film

— Inter-radical recombination, e.g gel dosimeters

--- More complex models including charge transport, e.g. TLD

Relative dosimetry - ion chambers

Palmans, Dosimetry, in : Proton Therapy Physics, Ed Paganetti

Vorlage / template. ZA000_10700_1310013, Vers4.0

Relative dosimetry – Solid state detectors : diamond

(Fidanzio et al 2002, Med Phys 29:669-675)

Relative dosimetry – Solid state detectors : diamond

(Fidanzio et al 2002, Med Phys 29:669-675)

Relative dosimetry – Solid state detectors : alanine/ESR

Alanine - stack in PMMA

(Palmans 2003 Technol Cancer Res Treat. 2:579) experimental data from Onori et al 1997 Med. Phys. 24:447

NPLO

Alanine for protons and ions

Fig. 1. Calculated relative efficiencies for infinitesimal thin detectors, without fading effects.

CERN anti-proton beam

GSI ¹²C ion beam

Relative dosimetry - Solid state detectors : mosfet

(Kohno et al 2006, Phys Med Biol 51:6077-86)

Relative dosimetry - Radiochromic film

(Piermattei et al 2000, Med Phys 27:1655-60)

Relative dosimetry - Gel dosimetry

(Gustavsson et al. 2004 Phys. Med. Biol. 49:3847-55)

Relative dosimetry - TLD

(Besserer et al 2001 Phys. Med. Biol. 46:473-85)

Vorlage / template. ZA000_10700_1310013, Vers4.0

Relative dosimetry – Solid state detectors : diode

(Grusell and Medin 2000 Phys. Med. Biol. 45:2573-82)

Relative dosimetry - Plastic scintillator

(Safai et al. 2004 Phys. Med. Biol. 49:4637-55)

Relative dosimetry - Plastic scintillator

(Safai et al. 2004 Phys. Med. Biol. 49:4637-55)

Relative dosimetry - Plastic scintillator

(Safai et al. 2004 Phys. Med. Biol. 49:4637-55)

Reading

C. P. Karger, O. Jäkel, H. Palmans and T. Kanai, "Dosimetry for Ion Beam Radiotherapy," Phys. Med. Biol. 55(21) R193-R234, 2010

H. Palmans, A. Kacperek and O. Jäkel, "Hadron dosimetry" In: Clinical Dosimetry Measurements in Radiotherapy (AAPM 2009 Summer School), Ed. D. W. O. Rogers and J. Cygler, (Madison WI, USA: Medical Physics Publishing), 2009, pp. 669-722

H. Palmans, "Dosimetry," In: Proton Therapy Physics, Ed. H. Paganetti (London: Taylor & Francis), 2011, pp. 191-219

H. Palmans, "Monte Carlo for proton and ion beam dosimetry," In: Monte Carlo Applications in Radiation Therapy, Ed. F. Verhaegen and J Seco, (London: Taylor & Francis), 2013, pp. 185-199

IAEA TRS-398 ICRU Reports 59 and 78