Dose remapping and summation for head and neck adaptive radiotherapy applications

Ana Mónica Lourenço Catarina Veiga Jamie McClelland Gary Royle

NPL PPRIG Proton Therapy Physics Workshop 13th March 2014

Why adaptive radiotherapy for head and neck patients?

Head and neck patients are a source of concern within UCLH radiotherapy department.

- HN is a sensitive cohort
 - Positioning errors
 - Anatomical changes

- A set of tight procedures are followed during RT
 - Total of 15 patients re-planned between 2010-2012
 - Reason for re-planning: visible and significant physical changes

Why adaptive radiotherapy for head and neck patients?

- Replanning uses a lot of clinical resources
 - Method to evaluate the necessity and timing of intervention
- In-house validated Deformable
 Registration for research purposes
 using CT and CBCT
- Future proton center expecting to treat its first patients in 2018
 - HN one of the cohorts expected to be treated
 - In-room imaging

Artist's impression of how the UCLH Proton Beam Therapy Centre will look. Picture courtesy of Scott Tallon Walker. (http://www.stwarchitects.com/sketchbook.php#item62)

CT-CBT deformable registration for an ART workflow

Deformable registration software, NiftyReg

- Software developed by the Centre of Medical Image Computing (CMIC)
- > Contains several tools for image registration and visualization

NiftyView

Ŵ

Deformable registration

Free-Form Deformation (FFD) based on B-Splines and voxelbased similarity measure (NMI) GPU implementation

- Standard uni-directional
- Numerical estimation of a deformation field
- > Symmetric
- > Diffeomorphic

Deformable registration implementations

AUCI

Advantages			Disavantages
 more realistic and physically plausible deformations reduced bias towards the direction of the registration 		 computationally expensive point-to-point mapping is hard to validate 	
		$\overline{\mathbf{v}}$	
dose remapping and		automatic segmentation and	
dose summation "c			e of the day" calculations
Forward+Backward Forward+Inver		rse	Symmetric
-150	-1 -50	- 50 - 50	200

Methods and Materials

<u>Aim</u>: Investigate different implementations of B-Spline DIR for dose remapping and summation applications

- Patient data
 - planning CT and following CBCTs
 - closely monitored due to visible weight loss.
 - IMRT plans

Dose calculations were performed on a deformed pCT, and mapped back for dose summation using 3 different methods:

- i. Forward+Backward
- ii. Forward+Inverse
- iii. Symmetric
- Cumulative dose distributions displayed on the planning CT space.

m

Results

Forward+Backward

Forward+Inverse vs Symmetric

Â

Results

Discussion and conclusions

Current state of the work

- Optimized and validated different implementations of B-Spline registrations
- Framework for dose remapping and summation.
- Preliminary results on a limited dataset
 - IMRT cumulative dose distributions were overall similar for all methods.
 - Forward+Inverse currently computationally the more efficient.
- Future directions
 - Larger patient cohort
 - Proton therapy applications
 - CBCT in proton therapy where actually are we?

Acknowledgments

The authors would like to thank:

Marc Modat Pankaj Daga Gergely Zombori Matt Clarkson Sébastien Ourselin Syed Moinuddin Phil Davies Rachel Bodey Ivan Rosenberg Derek D'Souza Marcel van Herk

Contact: catarina.veiga.11@ucl.ac.uk

â

C.V. is funded by Fundação para a Ciência e a Tecnologia (FCT) grant SFRH/BD/76169/2011, co-financed by ESF, POPH/QREN and EU

