Investigation of on-line tumor edge detection using multiple Bragg peak detection in carbon therapy.

Marta F. Dias

Charles-Antoine Collins Fekete, Guido Baroni, Marco Riboldi, Joao Seco
1. Motivation and Aim

Challenges in charged particle therapy

→ Charged particles, e.g. carbons are highly sensitive to tissue density variations.

e.g.:
400MeV/u carbon beam crosses 27.3cm of water but only 16.4cm of bone
So 1mm of bone in a water medium causes an error of 0.6mm
1. Motivation and Aim

Challenges in charged particle therapy

→ Charged particles, e.g. carbons are highly sensitive to tissue density variations.

 e.g.:
 400MeV/u carbon beam crosses 27.3cm of water but only 16.4cm of bone
 So 1mm of bone in a water medium causes an error of 0.6mm

→ Tumor shifts/shrinkage
 geographical miss and/or high-dose deposition at OARs.

Image from Mori et al. [2013]
1. Motivation and Aim

Challenges in charged particle therapy

It is crucial to have on-line/precise knowledge of edges/interfaces along carbon's path!

→ Tumor shifts/shrinkage geographical miss and/or high-dose deposition at OARs.

Image from Mori et al. [2013]
Possible Solution: Carbon Imaging

→ Carbon CT/Radiography
1. Motivation and Aim

Possible Solution: Carbon Imaging
→ Carbon CT/Radiography

Diagram:
- Pencil Beam
- Stickman
- Range detector
1. Motivation and Aim

Possible Solution: Carbon Imaging

→ Carbon CT/Radiography

![Pencil Beam](image1.png)

Stickman

![Range detector](image2.png)

Bragg Curve
1. Motivation and Aim

Possible Solution: Carbon Imaging

→ Carbon CT/Radiography

Bragg Peak position is converted into total WET crossed.

Pencil Beam

Stickman

Bragg Curve

Range detector
1. Motivation and Aim

Possible Solution: Carbon Imaging

→ Carbon CT/Radiography

Bragg Peak position is converted into total WET crossed.

Range detector

→ Carbons travel near straight paths (less than 1mm error for WET of 20cm) Fekete et al. [2016]

Marta F. Dias, 1st Dec 2016
1. Motivation and Aim

Each peak contains information about the crossed materials

Range detector signal

$$-\frac{\partial E}{\partial z}$$

Beam propagation axis

$z (a.u.)$
1. Motivation and Aim

It is crucial to have on-line/precise knowledge of edges/interfaces along carbon's path!

Hypothesis: we can detect on-line (during treatment) tumor edges using information from the detected multiple Bragg peaks.

- Reduced number of irradiation beams in order to reduce dose delivered to the patient.
- No imaging reconstruction methods.
2. Materials and Methods

We can decompose the peak into pristine Bragg peaks.
We can decompose the peak into pristine Bragg peaks.

Assumptions:

1. Straight path;
2. Materials and Methods

We can decompose the peak into pristine Bragg peaks.

Assumptions:

1. Straight path;
2. No tails due to secondary particles.
2. Materials and Methods

We can decompose the peak into pristine Bragg peaks.

Assumptions:
1. Straight path;
2. No tails due to secondary particles.
3. Gaussian Beam, this is assumed to be valid at any depth along the beam trajectory.
2. Materials and Methods

We can decompose the peak into pristine Bragg peaks.

Assumptions:
1. Straight path;
2. No tails due to secondary particles.
3. Gaussian Beam, this is assumed to be valid at any depth along the beam trajectory.
4. \(R_1 = \alpha E_0 \) (Bortfeld and Schlegel, [1996])
2. Materials and Methods

We can decompose the peak into pristine Bragg peaks.

Assumptions:
1. Straight path;
2. No tails due to secondary particles.
3. Gaussian Beam, this is assumed to be valid at any depth along the beam trajectory.
4. \(R_1 = \alpha E_0^p \) (Bortfeld and Schlegel, [1996])

The dose deposit at any point \(z < R \):

\[
- \frac{\partial E}{\partial z} = \frac{(R - z)^{1/p} - 1}{p\alpha^{1/p}}
\]

![Diagram showing the energy loss profile with the assumptions mentioned.]
We can decompose the peak into pristine Bragg peaks.

\[
\Delta I = \frac{\partial E(R_2) - \partial E(R_1)}{\partial E(R_1)}
\]

Range detector signal

\(\partial E \), total detected signal

\(\partial E_1 \)

\(\partial E_2 \)

\(z \) (a.u.)

\(R_1 \) and \(R_2 \)

\(\Delta WET \)
We can decompose the peak into pristine Bragg peaks.

\[\Delta I = \frac{\partial E(R_2) - \partial E(R_1)}{\partial E(R_1)} \]

Theoretical \(\Delta I - \Delta WET \) curve

\[\Delta I = \lambda^{1 - \frac{1}{p}} \Delta WET^{\frac{1}{p} - 1} + \left(\frac{W_2}{W_1} - 1 \right) \]
We can decompose the peak into pristine Bragg peaks.

\[\Delta I = \frac{\partial E(R_2) - \partial E(R_1)}{\partial E(R_1)} \]

Theoretical \(\Delta I - \Delta WET \) curve

\[\Delta I = \lambda^{1 - \frac{1}{p}} \Delta WET^{\frac{1}{p} - 1} + \left(\frac{W_2}{W_1} - 1 \right) \]

\(W_1 \rightarrow \) percentage of carbons crossing above the interface
We can decompose the peak into pristine Bragg peaks.

\[\Delta I = \frac{\partial E(R_2) - \partial E(R_1)}{\partial E(R_1)} \]

Theoretical \(\Delta I - \Delta WET \) curve

\[\Delta I = \lambda^{1-\frac{1}{\nu}} \Delta WET^{\frac{1}{\nu}} - 1 + \left(\frac{W_2}{W_1} - 1 \right) \]

\(W_1 \rightarrow \) percentage of carbons crossing above the interface

\[W_2 = 1 - W_1 \rightarrow W_1 = \frac{1 - \text{erf} \left(\frac{Y}{\sigma \sqrt{2}} \right)}{2} \]
2. Materials and Methods

We can decompose the peak into pristine Bragg peaks.

\[\Delta I = \frac{\partial E(R_2) - \partial E(R_1)}{\partial E(R_1)} \]

Theoretical \(\Delta I - \Delta \text{WET} \) curve

\[\Delta I = \lambda^{1 - \frac{1}{\nu}} \Delta \text{WET}^\frac{1}{\nu} - 1 + \left(\frac{W_2}{W_1} - 1 \right) \]

\(W_1 \rightarrow \) percentage of carbons crossing above the interface

\[W_2 = 1 - W_1 \rightarrow W_1 = \frac{1 - erf \left(\frac{Y}{\sigma \sqrt{2}} \right)}{2} \]

We scan the interface for three irradiation spots (known spacing).
2. Materials and Methods

- We can decompose the peak into pristine Bragg peaks.

\[\Delta I = \frac{\partial E(R_2) - \partial E(R_1)}{\partial E(R_1)} \]

Theoretical \(\Delta I - \Delta WET \) curve

\[\Delta I = \lambda^{1-\frac{1}{\beta}} \Delta WET^{\frac{1}{\beta}-1} + \left(\frac{W_2}{W_1} - 1 \right) \]

- \(W_1 \rightarrow \) percentage of carbons crossing above the interface

- We scan the interface for three irradiation spots (known spacing).

- Apply the fit
2. Materials and Methods

We can decompose the peak into pristine Bragg peaks.

\[\Delta I = \frac{\partial E(R_2) - \partial E(R_1)}{\partial E(R_1)} \]

Theoretical \(\Delta I - \Delta WET \) curve

\[\Delta I = \lambda^{1 - \frac{1}{p}} \Delta WET^{\frac{1}{p} - 1} + \left(\frac{W_2}{W_1} - 1 \right) \]

At the edge:

\[\Delta I = \lambda^{1 - \frac{1}{p}} \Delta WET^{\frac{1}{p} - 1} \]
2. Materials and Methods

Validation: Monte Carlo Simulations

- 400 MeV carbon beam with n=10^6 particles
- Geant4 (v 4.9.6.p02) (Agostinelli et al. [2003]). Ion packages (Lechner et al. [2010]).
- FWHM = 4mm, 8mm and 10mm
2. Materials and Methods

Parametric phantoms:

- Rectangular bone insert
- Semi-cylindrical bone insert

 Beam position: [-3,-2,-1,0,1,2,3]mm above and below the interface
2. Materials and Methods

Parametric phantoms:

- Rectangular bone insert
- Semi-cylindrical bone insert

Range dilution effects, due to carbons from the same beam crossing different

- Beam position: [-3,-2,-1,0,1,2,3] mm above and below the interface
3. Materials and Methods

Edge detection through multiple BP: lung tumor example

→ X-ray CT prior knowledge for peak identification
→ The WET crossed and expected BP can be computed.
Parametric phantoms:

Parallel interface

\[\Delta I = \lambda^{1-\beta} \Delta \text{WET}^{1/\beta-1} - 1 + \frac{W_2}{W_1} \]

Semi-cylindrical

\[\Delta I = \lambda^{1-\beta} \Delta \text{WET}^{1/\beta-1} - 1 + \frac{W_2}{W_1} \]
4. Results and Discussion

Parametric phantoms:

Parallel interface:

\[\Delta I = \lambda^{1-\frac{1}{p}} \Delta WET^{\frac{1}{p}-1} + \frac{W_2}{W_1} \]

Semi-cylindrical:

\[\Delta I = \lambda^{1-\frac{1}{p}} \Delta WET^{\frac{1}{p}-1} + \frac{W_2}{W_1} \]

Zero at: 0.001mm
4. Results and Discussion

Parametric phantoms:

Parallel interface

- $\Delta I = \lambda^{1/\beta} \Delta W E T^{1/\beta-1} + \frac{W_2}{W_1}$

- Edge

→ Same error for all FWHM

→ Larger FWHM easier to identify the peaks

Semi-cylindrical

- $\Delta I = \lambda^{1/\beta} \Delta W E T^{1/\beta-1} + \frac{W_2}{W_1}$

- Edge
Clinical environment: Lung tumor

\[
\Delta l = \lambda^{\frac{1}{\beta}} \Delta W ET^{\frac{1}{\beta'-1}} - 1 + \frac{W_2}{W_1}
\]
Clinical environment: Lung tumor

\[\Delta I = \lambda^{\frac{1}{p}} \Delta W E T^{\frac{1}{p} - 1} - 1 + \frac{W_2}{W_1} \]

Zero at: 0.001/-0.015 mm
Edge detection within <0.01mm accuracy using multiple BP information.

→ Carbon imaging is worse than helium imaging [Fekete et al. 2016];
5. Conclusions and Future work

Edge detection within <0.01mm accuracy using multiple BP information.

→ Carbon imaging is worse than helium imaging [Fekete et al. 2016];

→ Difficult to change particle type and if two beams available, it is possible on-line detection;
Edge detection within <0.01mm accuracy using multiple BP information.

→ Carbon imaging is worse than helium imaging [Fekete et al. 2016];
→ Difficult to change particle type and if two beams available, it is possible on-line detection;
→ Low dose to the patient;
Edge detection within <0.01mm accuracy using multiple BP information.

→ Carbon imaging is worse than helium imaging [Fekete et al. 2016];

→ Difficult to change particle type and if two beams available, it is possible on-line detection;

→ Low dose to the patient;

→ Prior-knowledge strategies are required for the identification of the relevant peaks;

→ Future work will consider applying the same methods to other tumor areas and structures which can be used for patient positioning.
Acknowledgements

Fundação para a Ciência e a Tecnologia
Grant SFRH / BD / 85749 / 2012

German Cancer Research Center

Politecnico di Milano

Computer Aided RadioTherapy & Computer Aided Surgery

Massachusetts General Hospital

Marta F. Dias, 1st Dec 2016
References

I Rinaldi, S Brons, J Gordon, R Panse, and B Voss. Experimental characterization of a prototype detector system for carbon ion radiography and tomography. 413, 2013

Thank you so much for your attention/time!

Questions?
3. Results and Discussion

Edge detection through two Bragg peaks: theoretical formulation

Semi-cylindrical insert

- Smeared BP
- Different BP position
- Larger FWHM → Larger the ΔWEPL
- Larger FWHM → easier BP identification
4. Materials and Methods

Validation: Validation with ray-tracing

→ HU-RSP calibration curve
→ Patient CT data (Cancer Imaging Archive)
→ FWHM=4mm
→ Beam position: [-3,-2,-1,0,1,2,3]mm above and below the interface

\[WET = \sum (RSP_i \times a_i) \]

Measured signal with range dilution effects